Fluctuations in the heterogeneous multiscale methods for fast–slow systems
نویسندگان
چکیده
How heterogeneous multiscale methods (HMM) handle fluctuations acting on the slow variables in fast–slow systems is investigated. In particular, it is shown via analysis of central limit theorem (CLT) and large deviation principle (LDP) that the standard version of HMM artificially amplifies these fluctuations. A simple modification of HMM, termed parallel HMM, is introduced and is shown to remedy this problem, capturing fluctuations correctly both at the level of the CLT and the LDP. All results in this article assume the HMM speedup factor λ to be constant and in particular independent of the scale parameter ε. Similar type of arguments can also be used to justify that the τ -leaping method used in the context of Gillespie’s stochastic simulation algorithm for Markov jump processes also captures the right CLT and LDP for these processes.
منابع مشابه
Multiscale Integration Schemes for Jump-Diffusion Systems
We study a two-time-scale system of jump-diffusion stochastic differential equations. We analyze a class of multiscale integration methods for these systems, which, in the spirit of [1], consist of a hybridization between a standard solver for the slow components and short runs for the fast dynamics, which are used to estimate the effect that the fast components have on the slow ones. We obtain...
متن کاملDynamics of Macro–Nano Mechanical Systems; Fixed Interfacial Multiscale Method
The continuum based approaches don’t provide the correct physics in atomic scales. On the other hand, the molecular based approaches are limited by the length and simulated process time. As an attractive alternative, this paper proposes the Fixed Interfacial Multiscale Method (FIMM) for computationally and mathematically efficient modeling of solid structures. The approach is applicable to mult...
متن کاملNear-Optimal Controls of a Fuel Cell Coupled with Reformer using Singular Perturbation methods
A singularly perturbed model is proposed for a system comprised of a PEM Fuel Cell(PEM-FC) with Natural Gas Hydrogen Reformer (NG-HR). This eighteenth order system is decomposedinto slow and fast lower order subsystems using singular perturbation techniques that provides tools forseparation and order reduction. Then, three different types of controllers, namely an optimal full-order,a near-opti...
متن کاملA Computational Method to Extract Macroscopic Variables and Their Dynamics in Multiscale Systems
This paper introduces coordinate-independent methods for analyzing multiscale dynamical systems using numerical techniques based on the transfer operator and its adjoint. In particular, we present a method for testing whether an arbitrary dynamical system exhibits multiscale behavior and for estimating the time-scale separation. For systems with such behavior, we establish techniques for analyz...
متن کاملSuppression of Chaos at Slow Variables by Rapidly Mixing Fast Dynamics through Linear Energy-preserving Coupling
Abstract. Chaotic multiscale dynamical systems are common in many areas of science, one of the examples being the interaction of the low-frequency dynamics in the atmosphere with the fast turbulent weather dynamics. One of the key questions about chaotic multiscale systems is how the fast dynamics affects chaos at the slow variables, and, therefore, impacts uncertainty and predictability of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017